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ABSTRACT 
This  paper provides a  derivation  from  first principles of the stringent  symmetry  and  stability  requirements which 
deep  stellar nulling demands,  and also includes a brief status  report  on recent nulling results  obtained  with the 
Jet Propulsion  Laboratory’s  fiber-coupled  rotational-shearing  interferometer. To date,  the  deepest  transient nulls 
obtained  (at red wavelengths) are 2 x with a laser  diode  source, and 1.4 x with  a  single-polarization thermal 
white-light  source  filtered to  provide an 18% passband.  In  addition,  both  the laser and  white light nulls have  been 
stabilized to  the lop4 level. This visible wavelength laboratory nuller thus meets essentially all of the performance 
goals for the  planned nulling experiment  on  board NASA’s Space  Interferometer Mission, with  the sole exception of 
dual-polarization  operation. 
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1. INTRODUCTION 
Although  the high brightness  contrast  and small  angular  separation  characterizing  star-planet pairings has  thus  far 
prevented the direct detection of planets beyond  our  solar  system, the novel technique of nulling interferometry shows 
great promise in overcoming these obstaclesl-lO. The basic  premise of nulling interferometry is conceptually quite 
simple:  interference of the light  collected by a  pair of telescopes to  generate a  deep  destructive  interference  fringe at  
the stellar  position, thus selectively dimming the  star relative to  its surroundings. Of course to  be useful, the stellar 
cancellation  must  be both very deep and  broadband. A null depth  (the inverse of the rejection ratio)  on  the  order 
of lop6 is necessary to  dim stars  to  the level of possible companion terrestrial  planets at mid-infrared  wavelengths, 
while bandwidths of AA/A M 100% are needed to enable the detection of the extremely  faint emission levels expected 
from  terrestrial analogs.  To effect such  deep  starlight  cancellation, there is one  simple  experimental  requirement: at  
zero  optical  path difference (OPD) between the incident  stellar beams,  the two  arriving  electric field vectors  must 
subtract  to high precision,  i.e., 

El - E2 X 0. 

However, meeting this  requirement is decidedly non-trivial,  as  it calls for a very high degree of symmetry  and  stability 
in the optical  system which collects and combines the  starlight. 

This  paper  has two  main  goals. The first is to derive the  detailed  symmetry  and  stability  requirements which 
the above  equation  imposes  on the optical  system involved, and  the second is to provide  a brief status  update on 
recent nulling experiments  carried out  at  the  Jet Propulsion  Laboratory  with a fiber-coupled rotational-shearing 
interferometer  operating at visible wavelengths. 

2. SYMMETRY AND STABILITY REQUIREMENTS 
2.1. The case of plane monochromatic  waves 
As  will be shown in the following, the basic  requirement of precise electric field subtraction  can  be decomposed into 
a  set of subsidiary  symmetry and  stability requirements.  Because this field subtraction  must occur for both incident 
polarization  states, over a wide radiation  passband,  and across the full beam  aperture, while also  remaining  stable in 
time,  it is best to begin the analysis  with the simplest case of an incident field which consists of plane  monochromatic 
wavefronts. For this case, it is apparent  that  the two electric field vectors  must  be  equal in amplitude  and  opposite in 
direction  and phase. The relevant  question then is  how closely these  matching  conditions  must  be  satisfied in order 
to  achieve a given null depth,  N, defined here as  the  ratio of the  interferometer’s transmission in the destructive 
and  constructive  states, viz., at the null fringe and  at one of the two  adjacent  constructive  peaks.  This  definition 



was chosen for two  reasons. First, because the  constructive interference  peak provides near-unity  transmission for 
the stellar  signal, N as defined is automatically  normalized to  the full stellar  signal. And second, the  alternative of 
normalizing by the signal at  large OPD is unsatisfactory  both because this  approach would reference to  only half 
of the maximum  stellar  signal, and because it is much more  demanding  experimentally, calling as  it does for much 
larger,  and hence more  time-consuming, OPD changes. 

For a plane  monochromatic  wavefront,  the  incident  electric field vectors  arriving at  the two  collectors are, of 
course,  identical.  After  transmission down the two  beam  trains,  the  two electric fields can be described in terms of 
their  amplitudes  as 

El = E1,ei@lX5il + Elyei@lyfl 

and 

E2 = E2,ei@2x%2 + E2yei@zY92 

where % and 3 are a pair of unit vectors defining the directions of the two  orthogonal  polarization  states,  and  the 
subscripts 1 and 2 allow for a  relative  rotation of the fields in the two  interferometer  arms. The phase  factors, $ix 

and &,, with  i = 1, 2, allow both for different path  lengths in the two  interferometer arms,  and for the different 
phase delays likely to be  experienced by the two  polarization  components in propagating down a single beam  train. 

At  null, field subtraction  occurs, while at  the neighboring  constructive  peak  the fields add.  Summation  and 
subtraction of the fields at a  simple beamsplitter, or at a  more  complex, but equivalent, nulling beam  combiner, gives 

where the 1/.\/2 factor reflects an ideal 50150 intensity  split  in the  beam combiner. Using the definition of intensity, 

I = %(E. E*/2),  

where E denotes the real part,  the corresponding  intensities for constructive (+) and  destructive (-) interference are 

1 
I* = - [E:, + E;, ~EIXE~XCOS($IX - $2x)21 . 2 2  + E:, + EZY * ~ E I ~ E ~ ~ c o s ( $ I ~  - $2y)91 . 9 2 ]  . 

From this  it is evident that  the  subtracted x-field intensity will be nonzero if, as mentioned  earlier, 41, # $2x, or 
21 . k~ # 1, or  El, # E2,, with  analogous  conditions  applying to  the y-component of the field. 

4 (1) 

Introducing now the four  component  intensities, Ii, = Efx/2  and Ii, = E:,/2, with i=l ,  2, and defining the relative 
phase  delays for each polarization  component  as A$, = $1, - $2, and A$, = $Iy - & ? y ,  as well as  the relative 
polarization  rotation angle arot = cos-l(f1 ' 2 2 )  = cos-l(y1  .92), equation (1) can  be  recast as 

Furthermore, since deep nulling requires closely matched  beam  intensities,  it is useful to introduce the mean  intensities 
in  each of the  polarization  states, 

and 

and  the  fractional deviations  from the  mean intensities, 



and 

so that 

I- = ~ [(A4x)2 + arot + + +- [(A4,)2 + .x + , (IX ) 2 (1 ) 
2 

while the constructive  maximum becomes 

I+ = 2(Ix) + 2(IY). 

In  the simplest  case of a single polarization  component, the null depth is then 

I- 1 
N1po1 = - = 4 [(A&)’ + a:ot + , 

1, 
while in the dual-polarization  case  with (Ix) z (Iy),  the result is 

N = N ~ + N , + N I ,  

where these  three  terms correspond to those  in  equation (3). 

In the dual  polarization  case,  a  revealing  simplification  results  from  the  introduction of the mean  (polarization- 
averaged)  phase  delay 

and  the differential s-p  phase delay (the difference between the s-p delays in the two  interferometer  arms, where the 
s-p delay in each arm is defined as  the  phase delay difference between the two [s and p] polarization  components) 

A4s-p = A4y - A4x. 

With  these  substitutions,  equation (4) becomes 



This form is more  illuminating  because  it affords a  more  orthogonal  separation of terms.  The first term in equation 
(5) now clearly  reflects the average  phase  (i.e. pathlength)  error, which can be corrected by means of an optical 
delay line, while the second term is quite  different,  arising  entirely in the differential s-p  delay between the two  beam 
trains,  and so relates to asymmetries in the reflections and transmissions in the two  beam  trains.  The  third  term is 
the polarization  rotation  angle,  as in equation (3), while the  last two terms  are  the  intensity imbalances in the two 
polarization  states.  Equation (5) also  reduces  more transparently  to  the single polarization  case of equation (3), in 
that  the differential  s-p  delay term simply  vanishes  in the single-polarization  case. 

Two  quite  distinct  sources of intensity  mismatch  can  be envisioned: transmission  asymmetries, which are  static 
in character,  and  pointing-related  time-dependent  fluctuations of the coupling of the starlight  into  the single-mode 
spatial filter likely to  be located in the nuller output focal plane2.  Assuming that  static intensity  imbalances  can  be 
removed by an intensity  control scheme of some sort, only the  time-dependent pointing-induced  intensity  fluctuations 
remain. However, as such  fluctuations affect both  polarization  components equivalently, the  two  intensity  imbalance 
terms in equation (5) are  equal in this case, yielding finally 

where SI  now refers to  the fractional  deviation  from the mean  total intensity, (I) = (Ix) + (Iy). This  equation is 
now in a  form which is equally  applicable to  the single and  dual  polarization cases,  since = 0 in the single 
polarization  case,  and the intensity  term  can  be  taken to refer to  the  total power present in either of the two  cases. 
Equation (6) will be used as  the  starting  point for the following generalization. 

2.2. The Case of Polychromatic Plane Waves  From a Source of Finite  Extent 
To  summarize the development to  this  point,  equations (5) and (6) give the  instantaneous null depth for an incident 
monochromatic  dual-polarization  plane wave. However, real wavefronts will depart from this ideal  case in several 
ways. First,  the  stellar  spectrum is polychromatic.  Second, the finite extent of a  stellar  source implies that in reality 
a  superposition of plane waves with  a  small  range of incidence  angles is present.  Third,  after passage down the 
optical  train  the wavefronts will no longer be  perfectly planar,  but  are likely to be  somewhat  aberrated  on a  variety 
of scales.  Finally, the optical  system is not likely to  be completely stable, so that  minute  pathlength  and  pointing 
fluctuations will cause the null level to fluctuate.  A  generalization of the analysis is therefore  required.  In  this 
section, the assumptions of monochromaticity  and a point-like  source are relaxed. The  time dependencies  caused by 
fluctuations will then  be  addressed  in  the following section.  Due to space  limitations, wavefront aberrations  are  not 
addressed  here. 

To  begin, it is first important  to recognize that  the null depth N  should  more  properly be  written  as a  function 
of three variables,  N(0, X, t ) ,  where 6‘ is the angular  coordinate offset on  the sky  from,  and in the direction  normal 
to,  the single-baseline interferometer’s  linear null fringe, X is the  operating wavelength, and t is the  time.  The 
experimentally  measureable  quantity is then  the  instantaneous null depth averaged over the normalized  source 
distribution  and  passband, 

N(t) = 1 1 N(0, X, t)B(R)S(X) dRdX. 

Here R is shorthand for the two-dimensional  angular  source  coordinates, B(R) is the source’s  normalized spatial 
brightness distribution function  and S(X) is the normalized  detected spectrum (which accounts for both  the incident 
spectrum  and  the  instrumental  transmission). For simplicity  here, both B(R) and S(X) are  assumed normalized to 
unity  integrals. The main effect of both of these  “weighting  functions” is on the phase  error  term.  Spectral issues 
may  also impact  the differential s-p delay and  intensity  terms,  but likely only to second order, so these effects are 
neglected here. The integral of the phase term  in  equations (3), (5) and (6) is 

Now A$ is given by the sum of the on-axis phase delay, A& (X,  t) (which fluctuates in time  due  to  phase delay mis- 
matches between the two  interferometer arms) , and  the  time-independent two-element interferometer  fringe  response 
pattern, $fr(6’, X) ,  i.e., 



N@(t) = 4 /s(X)dX [/ [(A$'d(X,t) + $fr(B, X)12 B(fi)dfl] . 
1 

(8) 

For the case of a two-element nulling interferometer  with  a null fringe  centered  on  a star,  the fringe pattern  has 
the familiar  sinusoidal form 

where  b is the baseline  length. This  function is antisymmetric in 8, while for a disk-like stellar  source, B(R) is 
symmetric  in 8, the perpendicular offset from the null fringe. Thus, in the expansion of equation (8), 

Since A$,(& t )  is independent of the source  parameters,  this simplifies to 

The first term in  this  equation is the null depth for a point  source as limited by a phase  error between the two 
interferometer  arms, while the second term is the null contribution  due to  the variable  fringe  transmission  across the 
stellar  disk. The  latter  integral  can  be  done  quite simply  under the  assumption of a disk-like source of small  angular 
diameter Qdia. The normalized  source  brightness  distribution is then B(R)  = (7r ~9:~~/4)-' inside the  stellar disk and 
zero outside, so with the fringe  phase  from equation (9), the  term in square  brackets in equation (10) becomes 

star 

where the solid angle element dR has  been replaced by its equivalent in terms of the radial  and  azimuthal  angular 
coordinates 8, and $. Recalling that 8 is the angular offset from,  and  in  the direction  normal to,  the null fringe, 
while 8, is the  radial  coordinate offset from the center of the  star,  it is possible to  write 8 = B,cos($), so that 

which gives finally 

For this  term  to  be  small, a  stellar  diameter much smaller than  the fringe  spacing of X/b is needed. Equation  (10) 
then becomes 



The second term in this  equation  can  be conservatively  estimated  simply by evaluating  the  integral at  the  shortest 
wavelength in the  passband, Ash, so that 

S(X) (A$d(X, t))’dX + 

Evaluation of the first term in this  equation now requires  consideration of phase  dispersion  across the  passband, 
which can  be  done by setting 

A$d (X,  t) = A$c(t) + A$A (t) I 

where  A$,(t) is the simple  (time-dependent)  geometric  phase delay at  band center, while the A$A(t) term  accounts for 
phase  dispersion  across the  passband.  In  vacuum,  the  phase dispersion term  can  be assumed to  be time-independent, 
but for the case of ground-based  interferometers  with  open-air delay lines, the time-variable amounts of H z 0  vapor 
present  in the two  beam  trains  can lead to  the time-dependence of this  term also.  Expanding the integral in equation 
(12)  then gives 

/s(X) (A$d(X, t))2 = /s(X) [(A$c(t))’ + aA$c(t)A$A(t) + (A$A(t))’] d X .  

Assuming for simplicity a linear  phase  gradient  with  wavelength, the middle term would disappear if S(X) were 
a  perfectly flat function. However, even if S(X) is not  flat,  the  third  term will dominate  the second due  to  the 
combination of its positive  definite nature  and  the zero-mean nature of A$,(t)  under  the  action of a  control  loop 
(next  section).  It is therefore safe to  neglect the middle term, yielding, 

/ s (x )  (A$d(X,t))’dX ( A h ( t ) l 2  f /S(X)(A$A(t))2dX, 

since  A$,(t) is independent of X and S(X) has  an  integral of unity. The first term here is the simple  geometric path 
delay error at  the passband  center, which is a function  only of time, while the second term is the spectrally-weighted 
mean  square  dispersion  across the  passband, 

The  net  phase  error  term in equation  (12)  thus becomes 

The  three phase-related terms  here  are  due  to  first,  the polarization-averaged  instantaneous  phase  error at the 
passband  center (which is related to delay-line positioning errors), second, the phase  dispersion  across the  passband 
(which is related to beamsplitter  coatings  and  other  dielectrics in the  beam  train, including H z 0  vapor),  and  third, 
the leakage due  to  the finite  extent of the  star (which can  be  altered  either by observing  a  more distant  star,  or by 
changing the observing wavelength or  the baseline length). 

Finally,  inserting N$(t) into  equation (6) in place of the simple (A$)’/4  phase term,  and now also  explicitly 
allowing for the time-dependence of the intensity  term,  the  instantaneous null depth in the more  general  case of 
polychromatic  plane waves from  a disk-like source becomes 

’ 1  
(A$,(t))’ + ((A$x(t))’) + r” (”) + 4 (A$s-p)z + a$,t + (dI(t))’ . 

4 h h / b  1 



2.3. Fluctuations 
Of the six terms in equation  (14),  to first  order only the  initial phase-delay term  and  the  last  intensity  term  are 
expected to show significant time-dependent  fluctuations in vacuum, the former due  to minute path delay  fluctuations, 
and  the  latter  due  to  fluctuations  in telescope  pointing, which lead to  fluctuations in the coupling of the starlight  into 
the requisite  single-mode spatial  filter. For simplicity, water  vapor  column  fluctuations will be  neglected  hereafter, 
so that  the dispersion term will be assumed constant. 

To  calculate the  magnitude of the fluctuations in the null level, it is necessary to address the mean  and  the 
variance of the null. The time-averaged  null, 

N = 1 T /N(t)   dt ,  

with T the integration  time, is given by 

If control loops are in place to  stabilize  both of the  fluctuating  quantities,  OPD  and  pointing, a t  zero mean, i.e., 

- 
6I(t) = 0, 

the first term in equation  (15) is then  the variance of the phase  error, 

0; = (A4c(tN2 

while the last  term is the variance of the fractional  intensity  deviations, 

0; = (6I(t))2. 

The time-averaged null in the presence of active OPD  matching  and  intensity balancing is thus 

The variance of the null, given by 

0; = 1 /(N(t) - N)2 d t ,  
T 

is then 

ON 2 1  = - 16 T / [ ((A$c(t))2 - 0;) + ((61(t))2 - 0;) I 2  dt. 

Given that pointing and OPD fluctuations  are  entirely  uncorrelated, it is safe to assume that 

(A4c(t))2(SI(t))2 = 4a;, 

so that  the cross term in the  outer  square can be neglected. Furthermore, using the fact that for a  zero-mean 
Gaussian  random  process in ( with  a  standard deviation of at the  expected value of t4 is given by 



- 
(4 = 3a; , 

equation  (17)  reduces to  

0; = -( 1 4  2a4 + 2 4 )  , 
16 

so that  the root-mean-square  (rms)  fluctuation of the null level is 

A fluctuation of the  instantaneous null to a level x standard  deviations above the  mean null level, where x is an 
arbitrary  number, is then 

Here is given by equation  (16).  In  the case where the mean  null is in  fact  determined  entirely by fluctuations in 
the two  time-variable  quantities,  equation  (19) simplifies to  

In  the  more  restrictive case that  pathlength  fluctuations alone dominate  the null, this becomes 

while if on  the  other  hand  intensity  fluctuations alone dominate,  the analogous  equation is 

To understand  the  meaning of these  last  two  results,  it is useful to  consider one of these  two  limiting cases 
further. For dominant  pathlength  fluctuations,  the  instantaneous  pathlength  phase  error to which the XCTN null level 
corresponds  (from  equation  14) is simply ~ ( X C N )  = 2 K ,  or 

$h(X[TN) = a&+ x&. (23) 

This  equation  results from the  quadratic relationship  between the null depth  and  the  phase  error,  and reflects the 
fact that in this  limit the phase  fluctuations themselves actually  set  both  the  mean null level and  the rms  fluctuation 
level. In  fact,  equation  (23) implies that null levels l - a  and 2-0 above the mean null occur for phase  errors of 1.5504 
and 1 .96~4 ,  respectively. For Gaussian  phase  fluctuations, null leakages at  or above  these l-a and  2-a null levels then 
occur only 12%  and 5% of the time.  Thus, because of the squaring  process, the null leakage is actually  somewhat 
more stable  than  the phase,  implying that fluctuations  in the null leakage l - a  above the average null are  already 
quite  rare.  Thus in the following, a 2-a (95% confidence inteval) null stability  criterion is used. 



2.4. Summary of Results 
Equations  (14),  (16)  and (18) thus provide  a  complete  description of the nulling performance to be  expected in the 
general  case of plane  polychromatic waves from a  small disk-like source. Specifically these  equations  provide  the 
instantaneous,  mean  and  rms null levels. These  equations  can  thus  be used to set an experimental  error  budget on 
the null leakage contributions. If each instantaneous  individual  contribution to  the light leakage at null is required to 
be less than some  maximum allowable null contribution, N, (not necessarily equal for each contribution),  equation 
(14)  leads to six constraints,  the first  four of which are essentially  identical in form: 

SI < 2 J N ,  

Since the sum of these  six  error  terms  must  be  smaller than  the desired  net null depth,  Nnet, a safe margin is then 
present if each  contribution is roughly N, M N,,t/lO. 

However, the first  two of these  relations  should  more  properly  be given in terms of rms  fluctuation levels. Equations 
(21) and (22) then imply that relations  (24a)  and  (24b)  should  be  replaced by 

( 2 4 4  

(24b') 

If x is set  equal to  2  (corresponding to a  positive 2-u null fluctuation),  these  last two  relationships  can  be  approximated 
quite closely by 

ffq5 < JN,  (24~" )  

f f I < J N , ,  (24b") 

both of which are a  factor of two  more  stringent than equations  (24a)  and  (24b). 

Finally, it is important  to  note  that  although  the  set of six  equations given here (24a"-b" and 24c-f) rigorously 
describes the nulling error  budget in the case  considered,  two issues nevertheless  remain  absent  from the  treatment. 
These  are  the effects of wavefront aberrations  and  photon noise. Both of these  factors  are  certain to affect nulling 
performance, but  time  and  space  constraints  do  not  permit  treatment of these  topics  here. 



Figure 1. Fiber-coupled  rotational-shearing i n t e r f e r ~ m e t e r ~ > ' ? ~ ~  used in the  JPL nulling experiments. 

3. EXPERIMENTAL NULLING RESULTS 
Finally, a brief status  update  on  the nulling experiments  being  carried  out a t   JPL is in order. The  JPL  laboratory 
nuller is a fiber coupled rotational  shearing interferometer operating at visible wavelengths5>', and  it  had earlier 
demonstrated  deep nulling of visible laser  light5. After further  upgrades to  the experimental  setup,  stable  white light 
nulls of better  than a part in lo4 are now obtained regularly" with  single-polarization, 18% bandwidth  white light. 
An example of such  a  stabilized  white  light null is shown in Figure 2, and  an overview of the  current  experimental 
status, in terms of best nulls vs.  bandwidth, is given in Figure 3. With  this level of demonstrated  performance,  this 
laboratory nuller has  thus  met essentially  all of the performance  goals of the nulling experiment  planned for NASA's 
Space  Interferometer Mission (SIM),  with the single exception of dual-polarization  operation. 
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Figure 2. Stabilized white-light null for 18% bandwidth,  single-polarization  thermal light centered at 650 nm.  The 
plotted  time  scan of the nuller output begins  with the nuller locked  on  a  constructive  interference fringe by means 
of a  position-dither  feedback  loop.  The  phase of the lock  loop is then flipped by 180 degrees, and  the nuller quickly 
locks onto  the null fringe,  rejecting light to  the lop4 level. Finally, the lock loop  phase is flipped a second time, 
returning  the nuller to  the constructive fringe. 
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Figure 3. Status of the JPL nulling experiments  as of late March 2000. The  plot shows both  the  best  transient 
and  stabilized  rejection  ratios  obtained vs. radiation  bandwidth.  The curve shows the  best  rejection which could  be 
obtained with  a standard  laboratory Michelson interferometer. 
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